--- title: "Demo" author: "Jens von Bergmann" date: "2019-11-04" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Demo} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r setup, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>", warning = FALSE, eval = nzchar(Sys.getenv("COMPILE_VIG")) ) ``` ```{r} library(VancouvR) library(dplyr) library(tidyr) library(ggplot2) ``` ### Get a list of property tax related datasets ```{r} search_cov_datasets("property-tax") %>% select(dataset_id,title) ``` ### Get metadata for tax report ```{r} get_cov_metadata("property-tax-report") %>% tail(10) ``` ### Get an overview of land and building values in RS zones ```{r} search_cov_datasets("property-tax") %>% pull(dataset_id) %>% lapply(function(ds) aggregate_cov_data(ds, group_by="tax_assessment_year as Year", where="zoning_district like 'RS-' or zoning_district like 'R1-1'", select="sum(current_land_value) as Land, sum(current_improvement_value) as Building")) %>% bind_rows() %>% mutate(Date=as.Date(paste0(as.integer(Year)-1,"-07-01"))) %>% pivot_longer(c("Land","Building")) %>% ggplot(aes(x=Year,y=value,color=name,group=name)) + geom_point(shape=21) + geom_line() + scale_y_continuous(labels=function(x)paste0("$",x/1000000000,"Bn")) + labs(title="City of Vancouver RS/R1-1 zoned land and building values", x="Tax year", color="", y="Aggregate value (nominal)") ``` ### Get data for property tax report and property polygons When metadata indicates that the data has a spatial componenet the package will automatically return the data in `sf` format. ```{r} tax_data <- get_cov_data(dataset_id = "property-tax-report", where="tax_assessment_year='2024'", select = "current_land_value, land_coordinate as tax_coord") property_polygons <- get_cov_data(dataset_id="property-parcel-polygons") %>% sf::st_transform(26910) ``` ### Compute and plot relative land values ```{r} plot_data <- property_polygons %>% left_join(tax_data %>% group_by(tax_coord) %>% summarize(current_land_value=sum(current_land_value)),by="tax_coord") %>% mutate(rlv=current_land_value/as.numeric(sf::st_area(geometry))) %>% mutate(rlvd=cut(rlv,breaks=c(-Inf,1000,2000,3000,4000,5000,7500,10000,25000,50000,Inf), labels=c("<$1k","$1k-$2k","$2k-$3k","$3k-$4k","$4k-$5k","$5k-$7.5k","$7.5k-$10k","$10k-$25k","$25k-$50k",">$50k"), ordered_result = TRUE)) ggplot(plot_data) + geom_sf(aes(fill=rlvd),color=NA) + scale_fill_viridis_d(option="magma",na.value="darkgrey") + labs(title="July 2023 relative land values",fill="Value per m^2",caption="CoV Open Data") + coord_sf(datum=NA) ```